Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Projected increases in hurricane intensity under a warming climate will have profound effects on many forest ecosystems. One key challenge is to disentangle the effects of wind damage from the myriad factors that influence forest structure and species distributions over large spatial scales. Here, we employ a novel machine learning framework with high‐resolution aerial photos, and LiDAR collected over 115 km2of El Yunque National Forest in Puerto Rico to examine the effects of topographic exposure to two hurricanes, Hugo (1989) and Georges (1998), and several landscape‐scale environmental factors on the current forest height and abundance of a dominant, wind‐resistant species, the palmPrestoea acuminata var. montana. Model predictions show that the average density of the palm was 32% greater while the canopy height was 20% shorter in forests exposed to the two storms relative to unexposed areas. Our results demonstrate that hurricanes have lasting effects on forest canopy height and composition, suggesting the expected increase in hurricane severity with a warming climate will alter coastal forests in the North Atlantic.more » « less
-
Abstract Topography affects abiotic conditions which can influence the structure, function and dynamics of ecological communities. An increasing number of studies have demonstrated biological consequences of fine‐scale topographic heterogeneity but we have a limited understanding of how these effects depend on the climate context.We merged high‐resolution (1 m2) data on topography and canopy height derived from airborne lidar with ground‐based data from 15 forest plots in Puerto Rico distributed along a precipitation gradient spanningc. 800–3,500 mm/year. Ground‐based data included species composition, estimated above‐ground biomass (AGB), and two key functional traits (wood density and leaf mass per area, LMA) that reflect resource‐use strategies and a trade‐off between hydraulic safety and hydraulic efficiency. We used hierarchical Bayesian models to evaluate how the interaction between topography × climate is related to metrics of forest structure (i.e. canopy height and AGB), as well as taxonomic and functional alpha‐ and beta‐diversity.Fine‐scale topography (characterized with the topographic wetness index, TWI) significantly affected forest structure and the strength (and in some cases direction) of these effects varied across the precipitation gradient. In all plots, canopy height increased with topographic wetness but the effect was much stronger in dry compared to wet forest plots. In dry forest plots, topographically wetter microsites also had higher levels of AGB but in wet forest plots, topographically drier microsites had higher AGB.Fine‐scale topography influenced functional composition but had only weak or non‐significant effects on taxonomic and functional alpha‐ and beta‐diversity. For instance, community‐weighted wood density followed a similar pattern to AGB across plots. We also found a marginally significant association between variation of wood density and topographic heterogeneity that depended on climate context.Synthesis. The effects of fine‐scale topographic heterogeneity on tropical forest structure and composition depend on the climate context. Our study demonstrates how a stronger integration of topographic heterogeneity across precipitation gradients could improve estimates of forest structure and biomass, and may provide insight to the ways that topography might mediate species responses to drought and climate change.more » « less
-
Abstract Fire emissions of gases and aerosols alter atmospheric composition and have substantial impacts on climate, ecosystem function, and human health. Warming climate and human expansion in fire‐prone landscapes exacerbate fire impacts and call for more effective management tools. Here we developed a global fire forecasting system that predicts monthly emissions using past fire data and climate variables for lead times of 1 to 6 months. Using monthly fire emissions from the Global Fire Emissions Database (GFED) as the prediction target, we fit a statistical time series model, the Autoregressive Integrated Moving Average model with eXogenous variables (ARIMAX), in over 1,300 different fire regions. Optimized parameters were then used to forecast future emissions. The forecast system took into account information about region‐specific seasonality, long‐term trends, recent fire observations, and climate drivers representing both large‐scale climate variability and local fire weather. We cross‐validated the forecast skill of the system with different combinations of predictors and forecast lead times. The reference model, which combined endogenous and exogenous predictors with a 1 month forecast lead time, explained 52% of the variability in the global fire emissions anomaly, considerably exceeding the performance of a reference model that assumed persistent emissions during the forecast period. The system also successfully resolved detailed spatial patterns of fire emissions anomalies in regions with significant fire activity. This study bridges the gap between the efforts of near‐real‐time fire forecasts and seasonal fire outlooks and represents a step toward establishing an operational global fire, smoke, and carbon cycle forecasting system.more » « less
An official website of the United States government
